گراف جابه جایی گروههای متناهی و ارتباط آن با گراف اول گروه
پایان نامه
- وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم پایه
- نویسنده عباس جعفرزاده
- استاد راهنما علی ایرانمنش سعید اکبری
- تعداد صفحات: ۱۵ صفحه ی اول
- سال انتشار 1386
چکیده
چکیده ندارد.
منابع مشابه
بررسی گراف جابه جایی و گراف توان یک گروه متناهی و ویژگی های متریک گراف ها
فرض کنیم $g$ یک گروه متناهی و $xsubseteq g$ باشد. گراف جابه جایی $c(g,x)$ عبارت است از گرافی با مجموعه رئوس $x$ به طوری که برای هر $x,yin x$، $xy$ یال است اگر و تنها اگر $xy = yx$. این گراف به طرق گوناگون بررسی شده است. در این جا دو حالت $c(g,g)$ و $c(g,g setminus z(g))$ را در نظر می گیریم. هدف ما بررسی ساختار، ویژگی های متریک و خواص گروه خودریختی های این گراف هاست. عل...
15 صفحه اولگراف جیکوبسن حلقه های جابه جایی متناهی
فرض کنید r یک حلقه جابه جایی و یکدار باشد و j(r) ایده آل جیکوبسن r باشد. گراف جیکوبسن حلقه r که با $mathfrack{j_r}$ نشان داده می شود، گرافی است با مجموعه رئوس r j(r) به طوری که دو رأس متمایز x و y به یکدیگر متصلند اگر 1-xy عنصری غیر یکه از r باشد. در این رساله به بررسی برخی ویژگی های گراف جیکوبسن از قبیل همبندی، مسطحی و تام بودن می پردازیم. همچنین پایاهای عددی از قبیل قطر، کمر...
گراف غیر جابه جایی p-گروه ها
روش های زیادی برای نسبت دادن یک گراف به یک گروه وجود دارد. ما گراف زیر را به گروه g نسبت می دهیم.فرض کنیم g گروهی غیر آبلی و z(g) مرکز آن باشد. گراف غیر جابه جایی گروه g را با ?_g نمایش داده و به صورت زیر تعریف می کنیم: (g(g را مجموعه ی رئوس گراف ?_g در نظر می گیریم و دو راس x و y را زمانی به یکدیگر وصل می کنیم که xy? yx. ما نشان می دهیم اگر ? _p و ? _h یکریخت باشند، آن گ...
15 صفحه اولگراف جابه جایی وابسته به گروه های متقارن و متناوب
فرض کنیم g یک گروه و (z(g مرکز گروه باشد. دراین صورت گراف جابه جایی وابسته به گروه g که با ?_g نمایش داده می شود بدین صورت تعریف می کنیم که رئوس آن عناصر غیر مرکزی یعنی (g(g می باشند و دو رأس x و y به یکدیگر وصل می باشند هرگاه xy=yx. در این پایان نامه همبندی، قطر، کمر و عدد استقلال گراف جابه جایی هنگامی که مرکز گروه بدیهی باشد، بررسی می شود. در انتها گراف جدید ?^g-غیر جابه جایی را معرفی و سپس ب...
15 صفحه اولگراف کلی و گراف منظم یک حلقه جابه جایی
فرض کنیم r حلقه جابه جایی باشد. گراف کلی r را که باt(ᴦ(r) نشان داده می شود، گرافی است با همه اعضای r، به عنوان رئوس ودوراس x, y ∈ r مجاورند، اگروفقط اگرx + y ∈ z(r) ، که در آن (z(r مقسوم علیه های صفرحلقه r می باشد. گراف منظم حلقه r که با reg(ᴦ(r) نشان داده می شود زیرگرافی القایی از t(ᴦ(r) است که رئوس آن، عناصرمنظم حلقه r می باشد وگراف مقسوم علیه صفرحلقه r که با z(ᴦ(r)) نشان داده می شود، زیرگراف...
منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
نوع سند: پایان نامه
وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم پایه
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023